HOMEWORK 1 - ANSWERS TO MOST PROBLEMS

PEYAM RYAN TABRIZIAN

1. Section 1.1: Four ways to represent functions
1.1.6. Yes (by the vertical line test), Domain $=[-2,2]$, Range $=[-1,2]$
1.1.18.
(a) The graph of $x(t)$ should just be a line going through the origin
(b) The graph of $y(t)$ should look at first like the right half of a parabola, then should be constant for a while, and then look like the left half of a parabola
(c) The graph of the horizontal velocity looks like a horizontal line
(d) See announcement on bspace for a detailed solution! The picture you get is:

1A/Solutions/Vertical Velocity.png

[^0]1.1.32. Domain $=[-2,2]$, Range $=[0,2]$, Graph is just the upper-half of the circle centered at 0 of radius 2 .
1.1.45. $f(x)=\frac{5}{2} x-\frac{11}{2}$
1.1.57. $V(x)=x(20-2 x)(12-2 x)$ (no need to expand the answer!)
1.1.61. f is odd, g is even

2. Section 1.2: Mathematical models: a catalog of essential FUNCTIONS

1.2.2.

(a) Rational function
(b) Algebraic function
(c) Exponential function
(d) Power function
(e) Polynomial of degree 6
(f) Trigonometric function

1.2.4.

(a) G
(b) f
(c) F
(d) g
1.2.8. (a) $y=2(x-3)^{2}$, (b) $y=-x^{2}-\frac{5}{2} x+1$

1.2.16.

(a) $C(x)=13 x+900$ (C is the cost and x is the number of chairs produced)
(b) 13; Cost per chair
(c) 900 ; Start-up cost (i.e. money needed to buy machines in order to start producing chairs)

3. SECTION 1.3: New functions from old functions

1.3.1.
(a) $y=f(x)+3$
(b) $y=f(x)-3$
(c) $y=f(x-3)$
(d) $y=f(x+3)$
(e) $y=-f(x)$
(f) $y=f(-x)$
(g) $y=3 f(x)$
(h) $y=\frac{1}{3} f(x)$
1.3.7. $y=-\sqrt{3(x+4)-(x+4)^{2}}-1$
1.3.14. Basically compress the graph of $\sin (x)$ horizontally by a factor of 3 (notice that the new period now is $\frac{2 \pi}{3}$ and then stretch the resulting graph vertically by a factor of 4 (so the new graph has range $[-4,4]$ instead of $[-1,1]$)

1.3.30.

(a) $(f+g)(x)=\sqrt{3-x}+\sqrt{x^{2}-1}$
(b) $(f-g)(x)=\sqrt{3-x}+\sqrt{x^{2}-1}$
(c) $(f g)(x)=\sqrt{3-x} \times \sqrt{x^{2}-1}$
(d) $\left(\frac{f}{g}\right)(x)=\frac{\sqrt{3-x}}{\sqrt{x^{2}-1}}$

All of those functions have domain $(-\infty,-1] \cup[1,3]$ EXCEPT for (d), which has domain $(-\infty,-1) \cup(1,3]$

1.3.36.

(a) $(f \circ g)(x)=\frac{\sin (2 x)}{1+\sin (2 x)} ;$ Dom $=$ all odd multiples of $\frac{\pi}{2}$
(b) $(g \circ f)(x)=\sin \left(\frac{2 x}{1+x}\right) ;$ Dom $=$ all real numbers except -1
(c) $(f \circ f)(x)=\frac{\frac{x}{1+x}}{1+\frac{x}{1+x}}=\frac{x}{1+2 x} ;$ Dom $=$ all real numbers except $\frac{-1}{2}$ and -1
(d) $(g \circ g)(x)=\sin (2 \sin (2 x)) ;$ Dom $=$ all real numbers
4. Section 1.4: Graphing Calculators and Computers

Don't worry about this section, it's not very important and it won't be on the exam!

5. Section 1.5: Exponential Functions

1.5.3. Basically, the larger the base, the faster the function is increasing
1.5.5. Notice that $\left(\frac{1}{3}\right)^{x}=3^{-x}$, which means that $\left(\frac{1}{3}\right)^{x}$ is the reflection of 3^{x} across the y-axis! Similarly with 10^{x}.
1.5.6. The smaller the base, the faster the function is going to 0 .
1.5.16. (a) All real numbers; (b) All ≤ 0 real numbers
1.5.17. $f(x)=3 \cdot 2^{x}$
1.5.18. $f(x)=2 \cdot\left(\frac{1}{3}\right)^{x}=2 \cdot 3^{-x}$

[^0]: Date: Wednesday, January 26th, 2011.

